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Abstract

Addiction is characterized by improper engagement of neurobiological systems 
involved in adaptive decision-making. The prevalence of relapse among addiction 
patients may be explained by the persistence of maladaptive patterns of synaptic 
connectivity. An effective approach to addiction treatment and relapse prevention may 
thus rely on enhancing the brain’s capacity for neuroplasticity and self-regulation. 
A growing body of evidence indicates that neurofeedback is capable of promoting 
neuroplasticity, resolving maladaptive activity, and improving self-regulation.
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Introduction

Recognizing addiction as a public health crisis

A recent report published by the Center for Behavioral Health 
Statistics and Quality found that approximately one in seven 
Americans is expected to develop a substance use disorder at 
some point in their lives [1]. In 2015, 20.8 million people aged 
12 or older in the United States had a substance abuse disorder, 
indicating that the number of Americans suffering from addiction 
is similar to the number of Americans suffering from diabetes [2]. 
Moreover, the prevalence of substance use disorders is nearly 1.5 
times that of all cancers combined [3].

In 2014, over 47,000 people died from a drug overdose. This 
figure includes nearly 30,000 people who died from an overdose 
involving prescription drugs, which is more than in any previous 
year on record. Heroin overdoses have more than tripled between 
2010 and 2014 [4]. Alcohol misuse, which contributes to 88,000 
deaths per year in the United States, was found to be the nation’s 
fourth leading preventable cause of death [5,6]. Approximately 
one in ten deaths among working adults in the United States 
is caused by alcohol abuse [5]. The health care expenses, lost 
productivity, and criminal justice costs related to substance abuse 
are estimated to cost the federal government $442 billion dollars 
each year [7,8]. In response to this public health crisis, the U.S. 
Surgeon General published a report declaring that addiction must 
be approached as a chronic illness, alongside conditions such as 
heart disease, diabetes, and cancer [9].

Current issues in addiction treatment and relapse 
prevention

Addiction is characterized by improper engagement of the 
systems involved in adaptive decision-making [10]. Deficiencies 
in executive functions such as working memory allow substance 
use behavior to be guided more strongly by automatic, impulsive 
processes [11]. Genetic polymorphisms or stress may induce 
a hypodopaminergic trait/state, predisposing individuals to 
instinctively seek out substances or behaviors that stimulate 
dopaminergic activity [12,13]. Substance use may thus engage a 
vicious cycle, as addictive drugs have been implicated to damage 
brain regions involved in higher-order functioning, further 
reducing self-regulatory capabilities [14].

Although traditional methodologies such as counseling, group 
therapy, and medication have produced some success in treating 
addiction, relapse rates remain high. Bailey et al. reported that 
90% of inpatient opioid detoxification patients relapsed within a 
year of treatment [15]. A key factor accounting for the likelihood 
of relapse among addiction patients may be the persistence of 
aberrant neurobiological changes affecting reward prediction 
and motivation. It is plausible that traditional therapies may only 
address maladaptive patterns of synaptic connectivity to a limited 
extent, preserving some aberrant pathways. In times of stress or 
anxiety, addicts may abandon rational logic in favor of emotional 
impulse, activating their fight-or-flight response and potentially 
prompting reengagement of aberrant neurobiological pathways, 
whose association with a sense of relief has been preserved. In a 
sample of cocaine addicts, stress-related increases in craving and 
associated hypothalamic-pituitary-adrenal axis responses were 
predictive of relapse outcomes [16]. Although a “magic bullet” 
cure for addiction continues to evade researchers, an effective 
approach to addiction treatment and relapse prevention may 
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rely on resolving core neurobiological issues affecting reward 
prediction, motivation, and adaptive decision-making.

Synaptic changes underlying addiction

Although the full diversity of drug effects involves a wide array 
of brain regions and mechanisms, most addictive drugs share the 
common property of promoting striatal dopamine release [17,18]. 
Dopaminergic stimulation of gene expression is associated 
with long-lasting changes in synaptic networks, supporting the 
notion that dopamine may operate as a modulator of learning 
mechanisms [19]. Specifically, dopamine has been implicated to 
play a key role in reward prediction and psychomotor activation. 
Fluctuations in dopamine cell firing rates strongly resemble 
“error signals” in models of reinforcement learning [10,20]. 
Stimulation of dopamine neurons has been shown to modulate 
corticostriatal synaptic strength in direct correlation with 
behavioral reinforcement [21]. Dopamine cells may thus play an 
integral role in a natural process designed to help shape behavior 
in accordance with reward prediction.

Following this logic, addictive drugs can be understood as 
“hackers” of this system, as they may reinforce maladaptive 
motivations and behaviors. Addictive drugs can engage molecular 
mechanisms normally involved in associative learning, including 
stimulation of dopamine D1 receptors, activation of the cAMP/
PKA/CREB signal transduction pathway, altered gene expression, 
and synaptic rearrangements [19]. The persistence of drug 
addiction may reflect the persistence of altered patterns of 
synaptic connectivity created through these mechanisms. With an 
understanding of these mechanisms, it follows that an effective 
approach to addiction treatment and relapse prevention may 
need to address maladaptive patterns of synaptic connectivity 
and improve the brain’s capacity for self-regulation.

The emergence of neurofeedback as a recovery 
resource

Neurofeedback is an emerging treatment modality that 
involves the use of a brain-computer interface to display a patient’s 
instantaneous brainwave activity on a monitor. By reflecting 
electrical activity across targeted brain regions, this procedure 
generates a “neural mirror,” allowing the brain to observe its own 
activity.

Neurofeedback was implemented in the early 1970’s, but it 
was not until the late 1980’s that technological advancements 
optimized the treatment. During the late 1980’s and early 1990’s, 
Peniston & Kulkosky [22] developed an innovative neurofeedback 
protocol that was shown to increase alpha and theta brain wave 
production, normalize personality measures, prevent increases in 
beta-endorphin levels, and prolong prevention of relapse among 
alcoholic patients [22]. Notably, the protocol achieved significant 
improvements in samples that included many subjects for whom 
pharmacological treatment had not proven beneficial.

In 2005, Scott et al. [23] tested the effectiveness of a 
neurofeedback protocol on a mixed substance abusing population 
to assess whether or not the breakthroughs achieved with 
alcoholic patients could extend to abusers of other substances 
[23]. In comparison to control subjects who underwent traditional 

therapy, experimental subjects who underwent neurofeedback 
training in conjunction with traditional therapy were nearly twice 
as likely to not drop out of treatment. The experimental group 
showed statistically significant improvement on five of the ten 
personality scales administered in the Minnesota Multiphasic 
Personality Inventory (MMPI). Experimental subjects also 
demonstrated statistically significant improvement on the 
Test of Variables of Attention (TOVA), which was not observed 
among control subjects. At the 12-month follow-up, 77% of the 
experimental subjects were abstinent, compared to 44% of the 
control subjects. Addictions for all drug types were successfully 
treated by the same neurofeedback protocol; there was no 
significant interaction between drug type used and abstinence 
rate among patients who underwent neurofeedback training. 
These findings suggest that neurofeedback can be used to target 
core neurobiological changes underlying the full spectrum of 
substance use disorders.

In an eight-year analysis (2006-2014) of 5,746 patients, 
Othmer S & Othmer SF [24] found that two-thirds of patients 
who initially scored poorly on measures of impulsivity (assessed 
via a Continuous Performance Test) attained normal functioning 
within twenty sessions of neurofeedback [24]. Notably, many 
patients actually scored above functional norms once the therapy 
was complete. These results can be understood within the 
framework of an optimum functioning model. According to this 
model, the brain naturally processes self-relevant information to 
optimize its functioning. The enhanced cognitive performance 
observed among these patients may be explained by a mechanism 
in which the informational network is augmented, improving the 
brain’s capacity to rewire itself in its innate quest for functional 
optimization.

Longitudinal follow-up data summarized by Othmer S & 
Othmer SF [25] showed that addiction patients who underwent 
neurofeedback training were three times more likely to be 
abstinent one year after treatment (75% success rate among 
experimental subjects, in comparison to 25% among control 
subjects) [25]. A ten-year follow-up clinical evaluation of patients 
who had undergone the original Peniston & Kulkosky [22] protocol 
provided additional evidence for the long-term effectiveness of 
this intervention [22]. These findings may be explained in part 
by fundamental shifts in regulatory dynamics, as neurofeedback 
targets right hemispheric brain regions involved in arousal 
regulation, affect regulation, and autonomic regulation [24].

Discussion
Altered functional connectivity has been postulated to be a key 

failure mechanism in addiction psychopathology [26]. However, 
by observing its own dysregulated state via neurofeedback, the 
brain can be propelled into novel state configurations, which are 
susceptible to reinforcement and consolidation [24]. Ros et al. 
[27] observed significant changes in neuronal activity following 
a session of neurofeedback training, which lasted for over 20 
minutes [27]. Addiction patients who underwent neurofeedback 
training reported experiencing dysphoria when they used a 
substance following the treatment, indicating that the intervention 
may have rewired the brain’s response to substance use [23,28]. 
Neurofeedback training may thus operate by promoting 
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neuroplasticity, facilitating adjustments in neuronal activity that 
support optimum functioning. More specifically, neurofeedback 
has been postulated to activate astrocytic mechanisms that 
facilitate synaptogenesis and manage network excitability through 
capillary blood flow [29-37]. Astrocytes function as the principal 
storage sites of glycogen granules in the central nervous system 
and may provide neurons with vital energetic substrates [38-44]. 
Astrocytes also operate as important mediators of neurotoxic 
events [45]. By influencing astrocytic activity, neurofeedback may 
enhance the brain’s ability to prune synaptic pathways, improving 
self-regulation.

A “brain fitness” program that featured neurofeedback 
reversed effects of mild cognitive impairment (MCI), achieving 
statistically significant improvements in cognitive function 
for 84% of patients [46]. Among the sample of 17 patients 
who underwent a post-program quantitative MRI, 12 patients 
exhibited either no atrophy or an actual growth in hippocampal 
volume. These findings support the conclusion that brain 
training with neurofeedback can improve cognitive function and 
potentially reverse hippocampal atrophy in patients with MCI. 
Neurofeedback has also been shown to significantly improve 
executive functioning and working memory [47,48]. By improving 
regulatory capabilities and executive functions, neurofeedback 
may provide a crucial buffer against relapse, which has been 
linked to impaired executive functions such as working memory 
[11,49]. In addition, neurofeedback training may promote a more 
relaxed state and lead to better perceived control of stress, thereby 
addressing another key factor in relapse prevention [22,50].

Conclusion
Although further research is necessary to elucidate the precise 

mechanisms by which neurofeedback optimizes brain function, 
accumulating research shows promise for the application of this 
emerging technology in the field of addiction medicine.
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